

API Vulnerabilities And Exploits Q2-2022

API Vulnerabilities Up 3.7x!

Read on to Learn Why – and How to Evaluate Your Risk.

Earlier this year, Gartner wrote that "by 2022, API abuses will move from an infrequent to the most frequent attack vector, resulting in data breaches for enterprise web applications." ¹ Midway through the year, is this being proved true by the facts on the ground? Is the threat real?

To address this, Wallarm examined API vulnerabilities and exploits that were publicly disclosed in Q2-2022, and what types of software from which vendors are involved.

We also analyzed publicly disclosed exploit POCs to determine where the risk lies.

In addition, we map these issues across industry standards, including both OWASP Top-10 (2021) for web apps and OWASP API Security Top-10 (2019), CVSS scores, and CWEs.

Use this data both to assess your exposure and to reduce the risk in your API portfolio.

¹ Gartner, Magic Quadrant for Application Security Testing (ID G00733839)

Which OWASP Top-10 Matters?

And which Risk Category?

Injections (OWASP A03 / API8) are now the largest API threat vector, ahead of BOLA by all metrics (number of issues discovered, exploitability and severity), and represent the highest risk to your API portfolio.

OWASP Top-10 (2021) for Web Apps

OWASP API Security Top-10 (2019)

Lower CVSS Average, but Less Secure?

G

Are CWEs Better Indicators of Risk?

Software Weaknesses Result in More Risk

2022 CWE Top 25 Most Dangerous Software Weaknesses

Rank	ID	Q2 count*	Name	50% of the Q2 vulnerabilities
1	CWE-787	n/a	Out-of-bounds Write	analyzed referenced CWEs
2	CWE-79	24	Cross-site Scripting	CWE Top 25 Most Dangerous
3	CWE-89	6	SQL Injection	Software Weaknesses list from MITRE / CISA ² .
4	CWE-20	11	Improper Input Validation	67 unique OMEs found in O2
5	CWE-125	n/a	Out-of-bounds Read	reports
6	CWE-78	15	OS Comand Injection	17 of these are considered
7	CWE-416	n/a	Use After Free	"most dangerous"
8	CWE-22	6	Path Traversal	Most seen: CWE-79, CWE-78
9	CWE-352	4	Cross-Site Request Forgery (CSRF)	and CWE-20
10	CWE-434	4	Unrestricted Upload of a File with Dangerous Type	² https://cwe.mitre.org/top25/ archive/2022/2022_cwe_top25.html
11	CWE-476	n/a	NULL Pointer Dereference	
12	CWE-502	1	Deserialization of Untrusted Data	
13	CWE-190	n/a	Integer Overflow or Wraparound	
14	CWE-287	4	Improper Authentication	
15	CWE-798	1	Use of Hard-coded Credentials	
16	CWE-862	1	Missing Authorization	
17	CWE-77	1	Command Injection	
18	CWE-306	2	Missing Authentication for Critical Function	
19	CWE-119	n/a	Memory Buffer Overflow	
20	CWE-276	2	Incorrect Default Permissions	
21	CWE-918	3	Server-Side Request Forgery (SSRF)	
22	CWE-362	0	Race Condition	
23	CWE-400	7	Incontrolled Resource Consumption	
24	CWE-611	2	Improper Restriction of XML External Entity Refe	rence
25	CWE-94	0	Code Injection	

*n/a means this CWE is not related to API Security, only for binary software / memory corruption bugs

37.1% 76.2% 72.7% 83.8% 64.3% **Published Exploit** POCs Unexploited Vulnerabilities But It's Not Just the Risky Ones In Q2, we find $\frac{1}{3}$ of API vulnerabilities are almost immediately exploited, with POCs published within a median of 16~17 days $(2-\frac{1}{2} \text{ weeks}).$ Exploited Vulnerabilities Unsurprisingly, exploited vulnerabilities had higher median CVSS scores (8.5 vs. 7.3), with many more rated as Critical.

What's In Your API **Portfolio?**

More Vulnerabilities Impacting More Vendors

We see a huge increase in the number of vendors with reported API vulnerabilities, up 3.7x or 270% (from 30 in Q1 to 111 in Q2), mirroring the overall growth.

While a vast majority of vendors (71%) are impacted by only 1 vulnerability, we find 9 vendors (8%) which were impacted by 4 or more vulnerabilities.

Impacted by 1 vulnerability

Top-5 Most Impactful API Vulnerabilities

We assess these to be the most impactful API vulnerabilities due to both the severity and reach of the product. Notably, while the CVSS score for the GitLab vulnerability is low, it's used by almost every developer in the world so it had to be included.

CVSSv3: 9.8 <u>CVE-2022-1388</u> BIG-IP iControl REST authentication bypass CWE-306 Missing Authentication for Critical Function	A07 OWASP API Top-10 API2 OWASP API Security Top-10
CVSSv3: 9.8 <u>CVE-2022-29464</u> WSO2 products unrestricted file upload with resultant remote code execution CWE-434 Unrestricted Upload of File with Dangerous Type	AO4 OWASP API Top-10 API4 OWASP API Security Top-10
CVE-2022-22980 Spring Data MongoDB SpEL Injection CWE-917 Improper Neutralization of Special Elements used in an Expression Language Statement	AO3 OWASP API Top-10 API8 OWASP API Security Top-10

♥GitLab	CVSSv3: 2.7	OWASP API Top-10
CVE-2022-1783 GitLab CE/EE Improper Privilege Man CWE-269: Improper Privilege Management	agement	API5 OWASP API Security Top-10
orgo argo	CVSSv3: 10.0	A07 OWASP API Top-10
CVE-2022-29165 Argo CD will trust invalid JWT claims is enabled	s if anonymous access	API2 OWASP API Security Top-10
CWE-287 Improper Authentication, CWE-290 Authenti Spoofing, CWE-200	cation Bypass by	

Be On The Lookout for These Too

What to address first? Triaging vulnerabilities for mitigation can be based on a variety of criteria, including:

Ranking	Frequency
based on frequency and	how many vulnerabilities are
severity, much like how	found in the vendor's
MITRE assesses CWEs ³	products?

Top-5 based on ranking (frequency × CVSS)

Vendor	count	CVSS avg
Robustel	9	9.1
Ruijie Networks	6	9.0
Argo Project	6	8.2
Wordpress	7	6.8
Strapi	4	7.2

Top-5 based on frequency (count)

Vendor	count	CVSS avg
Robustel	9	9.1
Ruijie Networks	6	9.0
Argo Project	6	8.2
Wordpress	7	6.8
Gitlab	5	4.4

Top-10 based on severity (CVSS average)

Severity

how bad are the

vendor's products?

vulnerabilities in a particular

Vendor	count	CVSS avg
Illumina	1	10.0
Рурі	2	9.8
ApolloGraphQL	1	9.8
Bonita Software	1	9.8
Couchbase	1	9.8
Form.io	1	9.8
git-pull-or-clone	1	9.8
lObit	1	9.8
MediaWiki	1	9.8
Powertek	1	9.8
Roncoo	1	9.8
Zyxel	1	9.8

Of course, ultimately it comes down to what is in your environment, how exposed it is, and how easy it is to exploit.

³ See https://cwe.mitre.org/top25/archive/2022/2022_cwe_top25_supplemental.html#methodDetails

Assessing Your API Security

API-specific vulnerabilities reported in Q2 grew by 268% to 184 (or about 2 per day) – which suggests an ever- increasing risk in your API portfolio.	*	The number of Critical and High risk API vulnerabilities have increased dramatically – which also indicates that extra vigilance is needed.	0
Injections (OWASP A03 / API8) are now the highest risk for APIs, ahead of BOLA by all metrics (number of discovered issues, exploitability and severity) – which points to the need for more pre-release testing.	٥.	33% of the reported API vulnerabilities are almost immediately exploited, with POCs published within a median of 2- ½ weeks – since these are probably underreported, this illustrates the need for run-time protection.	3

Expanding your vulnerability management program to cover APIs will require visibility across your entire API portfolio, assessing and triaging vulnerabilities as they arise, and ensuring mitigations are implemented – both in the code and at run-time. Refer to the **<u>API Security Tutorial</u>** for more information.

Want to learn more about API vulnerabilities and exploits?

Join the LinkedIn 🔥 API security community Interpretended in the second secon groups/12624726/

上

Download the Q1-2022 API Vulnerability Report at https://www.wallarm.com/ resources/api-vulnerabilities-discovered-andexploited-in-q1-2022

 \square Subscribe to our newsletter at lab.wallarm.com

\odot

Register for the upcoming Q2-2022 API Vulnerability Report webinar at http:// lab.wallarm.com/2022-q2-vulnerabilityreport-webinar/

