P wallarm

(415) 940-7077

www.wallarm.com k88 King St. Unit 508, San Francisco, CA 94107

https://www.wallarm.com

P wallarm 2

INTRODUGTION

Honeypots are not a new concept. Distributed honeypots can provide valuable information about attackers and attack patterns,
but they also serve as early warning systems in large enterprises. While there is general attack pattern data available from
honeypots today, there is a gap when it comes to APIs.

In order to fill that gap, and to improve our understanding of the attackers and their tools, Wallarm deployed the first API
honeypot in November of 2024. This report represents the initial results from 20 days of activity. We expected that it might take
longer to have compelling data to report, but the speed at which our fake APIs were discovered and accessed surprised us.
Instead of waiting for months of data, we decided to collect and report our immediate findings quickly. There's more work to be
done, but the results so far are important, and worth sharing. Our initial objectives in creating this APl honeypot architecture
was to learn about attackers behaviour, patterns, and velocity. We were especially interested in determining a baseline time to
discovery for newly deployed APlIs.

The quality and speed with which we achieved our initial aims will no doubt drive us to make this report a recurring event.

APl Honeypot Architecture and Methodology

We had big ideas for our APl honeypot architecture. We still do. But we have optimized our initial deployment for the objectives
at hand, and for time to delivery. This research data has been collected from a mock API written in Golang with a self-signed
SSL certificate. The APl Honeypot is designed to log all the incoming requests, including storing full request bodies, for all
possible 65535 ports and provide valid responses depending on the type of request, i.e. REST, GraphQL, etc. In our initial
deployment, no domain names were assigned. All the honeypot instances were published on IP addresses distributed across
14 different locations around the globe:

Canada UK Sweden
cato (Toronto) ukpt (Portsmouth)‘i sesg(Gothenburg).
: : ; Germany
USA ; B 5§ o= g
D S . ; RO eude (Munchen)
uswc (Washington DC) @ @/ Japan
USA © go o -
DT S ® ® ltaly] jpto (Tokyo)
uswe (Seattle) e s @/ .
itmi (Milan) ® S|ngapore
India sgsg (Singapore)
1SR i Gt @ .
usea (Orangeburg) . @ AUStra"a.
@\ Indonesia ausy (Sydney)
Brazil idja (Jakarta) o} Australia

brsp (Sao Paulo)

9 vasu B/L&v&@v

I[van Novikov
CEO, Wallarm

https://www.wallarm.com

P wallarm 3

TIME TODISGOVERY

Singapore

Mumbai

Jacarta

Portsmouth

Seattle

Sao Paulo

Sydney

® Gothenburg

Milan Orangeburg Washington DC Toronto Japan Munchen Melbourne

Our first objective was to understand how long it takes for a newly published API to be discovered, i.e. time to discovery. This
metric is an important starting point, and benchmark, for API security. Newly deployed APIs are often less protected,

unmanaged, and less secure. Our findings indicate that the average time for a newly deployed API to be discovered is just 29
seconds. Furthermore, the longest time we witnessed for discovery was 34 seconds. These two metrics are specifically the
time from opening the port to the first API request to any of endpoints, excluding /.

Discovery of the port isn't the same as discovery of the API. We also found that the time to discovery for the API it
words the time from port opening to a valid API call, was less than a minute.

https://www.wallarm.com

P wallarm 4

MOST GOMMON PORTS

As noted previously, our APl honeypot listens on all ports. This architecture is intended to capture information about which
ports are commonly discovered and attacked. We expected that port 80 would be the most common, and we were not
disappointed. Connections to port 80 accounted for 19% of the results. We were surprised, however, that the second most
common port was not 443. It was actually 26657, followed by the usual suspects of 443, 8080, and 8443.

Other insights about the top 20 ports are less obvious. Port 2375 (docker REST API, unencrypted) came in at number 6. We
also saw port 7547 (CWMP REST-based routers) in position number 11. This port was used by Mirai botnet back in 2016, and is
still impactful for many older router models Other ports of note are 5985 (WinRM HTTP-based API), 3000 (unPnP SOAP API,
CISCO, Netgear and others), 1433 (commonly used for MSSQL, but now also used by many APIs as an alternative to default
SSL 443 port), and 7777 (many different APIs).

©

a083
©

‘ 6866

B0 @ s

‘ 8090

3090

il

(19%)

2660/
(4%)

APIs are not only 80, 443 and common known ports.
Some very specific critical APIs are constantly under
attackers’ scans, like Docker’s 2375 port, UnPnP SOAP,
and CWMP HTTP-based APIs.

https://www.wallarm.com

P wallarm

MOST GOMMON AP! ERDPOINTS

Second to the time to discovery metric, we had research objectives around understanding how attackers probe newly
discovered APls. While there’s more work to be done here, including more complete emulation of APIs, the initial results are
valuable. This table represents the ranking of API paths requested by clients when first connecting to the APl honeypot.

Rank
1
2

© 00 N o wu

10
il
12
13
14
15
16
17

18

19
20
21
22
23
24
25

API Endpoint

[status

/v2/_catalog
/manage/account/login

/ws/Vv1/cluster/apps/new-
application

/-ping

/v1.16/version

/config

/wsman

[version

/metrics

[bfftracert
/solr/fadmin/info/system
[_cat/indices

fiop

/query
[actuator/gateway/routes

/solr/fadmin/cores
/boaform/admin/formLogin

/V1.24/containers/json
/geoserver/web/
/containers/json
Inet_info
[api/sys/login
/remote/logincheck

/all.json

Product/Service
Generic

Docker Registry
UniFi, Routers

Apache Hadoop
YARN

Docker, Generic
Docker

Generic
WS-Management
Generic
Prometheus
BigFix

Apache Solr
Elasticsearch

IPP Protocol
Generic

Spring Boot Actuator
Apache Solr

Tenda ONT GPON,
Routers

Docker
GeoServer
Docker
Generic
Generic
Fortinet VPN

Generic

Check your Internet-facing APIs for authentication,
before attackers do it. The more common softwar
use - the faster its API will be discovered by attac

From the data collected above, it's clear that you should not
name your public and non-authenticated API endpoints with
common names like /status, /info, /health or /metrics. We
should note that the combination of port 26657 and the /
status request points to Tendermint RPC, a blockchain
component, as the probable service there.The prevalence of
these paths in the data demonstrates that they are
commonly probed. In other words, endpoints like these will be
discovered in well under 2 minutes. If your service absolutely
requires public, unauthenticated endpoints, it would be better
to use less common names, or even better, use a random
UUID or SHA256 hash, similar to the approach for webhooks.

We further analyzed the most commonly requested endpoints
and mapped them to likely services and intent. Some of them
were simply discovery calls to identify a product or service.
Some were well-known product authentication checks, like
Docker, Grafana, or Prometeus.

Some were attempts to exploit specific CVEs. We did an in-
depth analysis for Top-50 the most common API requests
observed to determine the type distribution:

API Attacks by Types (among Top-50
most common API attacks)

Auth check

26.0 %

Discovery

34.0%

CVE
40.0 %

Overall, our API honeypot registered about 337 unique API
requests in the first few days after launching in any location,
followed by a decreasing number of additional requests. We
believe this behavior is the result of 403 responses returned
during interactions, and plan to improve the capabilities with
LLM-based responses in the future.

https://www.wallarm.com

P wallarm 6

WEB APPLIGATIONS VS. APIS:

WHIGH ARE THE TARGETS?

The honeypot observed that 54.4% of the total requests targeted APIs vs web applications, indicating that APIs have become a
slightly more attractive attack surface compared to web applications, which accounted for 45.6% of requests. However, in
terms of the diversity of unique exploits, web exploits made up 52% of the total, slightly outpacing APIs at 48%. We can
compare these results to Wallarm’s 2024 API ThreatStats report, which showed that 70% of attacks targeted APIs vs. web
applications. The results are different because the data sets being analyzed differ, but the conclusion is the same: APIs are
targeted more than web applications. This is particularly interesting because APIs only emerged as significant attack targets in
recent years, whereas web applications have been a focal point for attackers for decades. This shift underscores how quickly
APIs have risen in prominence within the threat landscape, demanding more attention from security teams despite their
relatively recent entry into the spotlight.

Thttps://www.wallarm.com/resources/2024-api-threatstats-tm-report

Request Types Exploit Targets

54.4 %

45.6% 48.0 % 52.0%

https://www.wallarm.com

P wallarm 7

ATTAGHERS

The analysis of ISP usage in API attacks Rank isp unique_explo Countries
highlights the strategic nature of these] Pfeloud UG 748 —
threats, as API attacks are not primarily
volumetric, but instead focus on diverse 3 HOSTGLOBAL.PLUS LTD 743 140 B L e = S e
and targeted exploit techniques. To 2 DigitalOcean 187 -
better understand attacker behavior,
we focused on unique exploits rather 4 AWS 149 ==
than sheer volume. Among thf—) ISPs 5 A 145 -
observed, Pfcloud UG, operating in
Germany and The Netherlands, stood 6 China Unicom Beijing Province Network 101]
out with the highest diversity of unique 7 Linode/Akamai 95 ——
exploits (748), reflecting a sophisticated o
and varied approach to API exploitation. 8 Hydra Communications Ltd 84 &
Similarly, DigitalOcean, active across 9 Private Layer INC 77 a
multiple countries, showcased o
significant diversity in exploit methods 10 Zenlayerinc 70 —mEmEEmE
(743), underscoring how attackers -
leverage cloud platforms for flexibility 1 CDS Global Cloud Co., Ltd 68 =
and global reach. .
12 DIGITALOCEAN 64 .=
Regionally focused ISPs such as China B = = o) GE A
glonaly ¢ . 13 Albaba 60 5
Unicom Beijing Province Network and o L =
Hydra C.O mmunications Ltd further Shenzhen Tencent Computer Systems L
emphasize how attackers leverage 14 Company Limited 59 G S (e] P
localized networks for unique exploit
strategies. Additionally, ISPs like 15 GCP 55 B
Zenlayer Inc and Alibaba showcase a E s
multi-regional approach, with exploit 16 Albaba 54 . e B
activity spanning continents, from Asia) .
to Europe. These patterns reveal a 17 Hangzhou Alibaba Advertising Co., Ltd. 52]
dynamic threat landscape where 18 China Mobile communications corporation 50 -
attackers employ both widely . . —
recognized and less conspicuous ISPs 19 ChinaMobile Communications 49 -
to maximize their reach and evade CRPELED
detection, highlighting the importance 20 Oracle Cloud 54 - = e
of monitoring exploit diversity across = 0 Eeer] "
network sources. electe =
22 China Unicom China169 Network 44]
23 UAB "Baltnetos komunikacijos" 44 e
24 BITNET 44 -
25 CAT Telecom Public Company Limited 44

Attackers prefer to choose local providers to improve connectivity to your APIs to get more data faster and bypass

geographic restrictions.

https://www.wallarm.com

P wallarm

HOW FAST ATTAGKERS
GANSTEAL APIDATA?

During the API honeypot experiment, we observed APl abuse patterns characterized by attackers using an average of

50 requests per second (RPS) distributed across 50 IP addresses. Our estimates put this setup, achievable with minimal
cloud infrastructure, at $50-$150/month per IP. This price point demonstrates the economic feasibility of large-scale API
exploitation. Additionally, the bandwidth required for such attacks is minimal, making them stealthy and harder to detect in

comparison to typical Distributed Denial of Service (DDoS) attacks.

We have analyzed how attackers exploit APIs through both single-request and batching techniques, and compared them with
web scraping. In the appendix, you can also find technical details on batching attacks using XML-RPC and GraphQL.

How fast attackers can steal 10 million user records

Attack Type

Avg Cost (50 IPs)

=
$50-$150

month

&
$50-$150

month

=
$10-$50

month

Key Conclusions on API Attack Velocity

Cost-Effective
Attacks

Stealthy
Bandwidth Usage

With cloud infrastructure
costs as low as $50-
$150/month per IP,
attackers can sustain
abuse patterns like 50
RPS across 50 IPs with
minimal investment.

Even at peak efficiency,
API attacks consume only
~20 Mbps—significantly
lower than DDoS attacks,
making them harder to
detect through
bandwidth monitoring.

Bandwidth Usage (Mbps) Time to Steal 10M Users (Minutes)
\\\\\\H///////
S 2 @
)) 66
S
~20 Mbps
W7y
\\\\\\ /////// @
= * = 6
S
~20 Mbps
WY
\\\\\\\ 1y, 2 @
1,666 s
~2 Mbps d
Batching Web Scraping
MY Multipliers vs.APIs

Techniques like XML-RPC
and GraphQL batching
can reduce time to steal
10 million records from
over an hour to just
minutes, highlighting the
amplified risk.

Traditional web scraping,
though still a threat, is
slower and more
bandwidth-intensive,
offering defenders more
time to respond.

https://www.wallarm.com

P wallarm e

GONGLUSION

There is no dispute that the API attack surface is growing. APl adoption is fueling business growth, and attackers follow the
money. The API Honeypot report is intended to quantify specific metrics through empirical observation and analysis. Based on
this data, here’s what we know:

APIs have surpassed
web applications as
attack targets.

Newly deployed APIs
will be discovered in
under a minute.

Unprotected APIs
will be exploited in
under a minute.

Well-known
products are highly
targeted by
attackers.

Protecting port 80
and 443 isn't enough;
APIs are present on

many other ports.

APIs facilitate high
velocity data theft at
low cost for
attackers.

The conclusions should drive organizations to adapt existing security practices and adopt new security tools. Discovery of your
API Attack Surface is a must, and protection from API attacks in real-time is a hard requirement. Wallarm will continue to
produce valuable research to help organizations defend their APIs.

I I Thank you for your commitment to
Wa a rl I I cybersecurity and for trusting Wallarm.

m Follow Wallarm on LinkedIn

https://www.wallarm.com
https://www.linkedin.com/company/wallarm/

P wallarm 10

What Are Batching Attacks?

Batching attacks exploit API features allowing multiple queries or operations to be combined into a single request. While
designed for efficiency, this functionality can be abused to amplify the impact of a single API call. Two common
implementations are XML-RPC and GraphQL.

Example 1: XML-RPC Batching

XML-RPC APIs often allow batching multiple calls into one request. Below is an example of a malicious batch call designed to
retrieve multiple user records:

<?xml version="1.0"7>
<methodCall>
<methodName>system.multicall</methodName>
<params>
<param>
<array>
<data>
<value>
<struct>
<member>
<name>methodName</name>
<value><string>getUserDetails</string></value>
</member>
<member>
<name>params</name>
<value><array><data>
<value><int>1</int></value>
</data></array></value>
</member>
</struct>
</value>
<value>
<struct>
<member>
<name>methodName</name>
<value><string>getUserDetails</string></value>
</member>
<member>
<name>params</name>
<value><array><data>
<value><int>2</int></value>
</data></array></value>
</member>
</struct>
</value>
</data>
</array>
</param>
</params>
</methodCall>

Here, the attacker requests user details for multiple IDs in a single call, reducing the nu
rate limits.

https://www.wallarm.com

P wallarm T

Example 2: GraphQL Batching

GraphQL APIs allow batching through its query language, which attackers can use to request multiple resources
simultaneously. Below is an example query:

query {

userl: getUserDetails(id: 1) {
id
name
email

}

user2: getUserDetails(id: 2) {
id
name
email

}

user3: getUserDetails(id: 3) {
id
name
email

}

Up to 100+ user queries combined

}

This query retrieves details for multiple users in a single request, exploiting the GraphQL batching capability to exponentially
increase data retrieval speed.

https://www.wallarm.com

