
WALL ARM.COM

Securing
Enterprise APIs

A Technical Guide for Practitioners

SAN FR ANCISCO, CA 94107188 KING ST. UNIT 508+1 (415) 940-7077

https://wallarm.com
tel:+14159407077

SeCURING eNTeRPRISe APIS

Contents
executive Summary ...3

Common Pitfalls in API Security ...5

Lack of Proper Authentication and Authorization ...6

exposure of Sensitive Data ...8

Poor Inventory and Visibility ...9

Insufficient Rate Limiting and Throttling ... 10

Security Misconfigurations .. 11

Server-side Request Forgery (SSRF) .. 13

Over-Reliance on Perimeter-Based Security ... 15

Broken Object Property Level Authorization .. 17

Unrestricted Resource Consumption .. 19

Unrestricted Access to Sensitive Business Flows ... 21

Conclusion .. 23

3exeCUTIVe SUMMARy

Executive Summary
APIs are the digital backbone of modern enterprises, enabling seamless integration,
innovation, and scalability. However, their growing use has made them a primary
target for malicious actors, putting sensitive data and systems at significant risk.

This white paper explores the importance of API security for enterprises, high-
lights common vulnerabilities, and presents best practices for securing APIs
using a defense-in-depth approach supported by dedicated security tools.

We’ll discuss why enterprises must prioritize API security, the pitfalls to watch
out for, and how implementing layered security measures can mitigate risks.
Designed for enterprise architects, CISOs, and security architects, this white
paper provides actionable insights to safeguard APIs and ensure resilience
against evolving security threats.

How are APIs used today?

Interconnectivity
APIs allow different systems, platforms, and devices to work together seam-
lessly. For example, APIs enable your fitness app to sync with your smartwatch.

Efficiency
Developers can use APIs to integrate pre-built functionalities (like Google
Maps or payment systems) instead of building them from scratch, saving time
and resources.

Scalability
APIs make it easier to scale applications by connecting to external services
or databases without overloading the core system.

Innovation
APIs empower businesses to create new products and services by leveraging
existing technologies. For instance, Uber uses APIs for maps, payments, and
notifications to build its platform.

4exeCUTIVe SUMMARy

Data Sharing
APIs facilitate secure and structured data sharing between organizations, en-
abling better decision-making and collaboration.

Automation
APIs enable automation by allowing systems to interact without human in-
tervention. For example, APIs can automate workflows in marketing, sales,
or customer support.

User Experience
APIs enhance user experiences by integrating multiple services into a sin-
gle platform. For example, social media platforms use APIs to let users log
in to third-party apps with their accounts.

In short, APIs are the backbone of modern digital ecosystems, enabling inno-
vation, efficiency, and seamless user experiences across industries.

The Primary Challenges in API Security
APIs come in many flavors, from ReST and SOAP to GraphQL and gRPC. De-
spite their differences, these technologies share common vulnerabilities that
attackers exploit. Some of the key challenges include improper management,
misconfiguration, and insufficient monitoring, all of which can significantly
compromise security.

Let’s review the primary challenges in detail:

In short, APIs are the backbone
of modern digital ecosystems,
enabling innovation, efficiency,
and seamless user experiences
across industries.

Common Pitfalls
in API Security

6L ACK OF PROPeR AUTHeNTICATION AND AUTHORIz ATION

Lack of Proper Authentication
and Authorization
Lack of proper authentication and authorization in API security is a critical weakness
that can open the doors to numerous threats, including unauthorized access, data
breaches, and exploitation of sensitive information.

PRO TIP

Implement an authorization layer
that validates the user’s permissions
for every action.

Use randomly generated Globally
Unique Identifiers (GUIDs) as object
identifiers, which reduce guessabil-
ity.

ensure these mechanisms apply
consistently across all resources.

Authentication ensures only verified users or systems can access an API, while
authorization dictates what actions or resources they can use. When these
mechanisms are poorly implemented or absent, attackers can easily imper-
sonate legitimate users or escalate their privileges to access restricted data.
For instance, weak API keys or failure to enforce token validation can allow
cybercriminals to bypass basic security measures, exposing private user infor-
mation or manipulating malicious data.

A failure in proper authentication and authorization often results in serious
real-world consequences. Take, for example, the case of a poorly designed
e-commerce API that lacks fine-grained access controls. Attackers could gain
unauthorized access to customer records, payment details, or even modi-
fy orders. A more alarming scenario may occur in industries like healthcare,
where unprotected APIs expose confidential patient records to anyone who
can exploit such vulnerabilities. This results in massive data privacy violations
and can lead to regulatory fines and damage to organizational reputation.
Prioritizing strong authentication and authorization protocols, such as OAuth
2.0 or multi-factor authentication, can mitigate these risks and safeguard APIs
from becoming an easy target for exploitation.

7L ACK OF PROPeR AUTHeNTICATION AND AUTHORIz ATION

Example

Scenario
An e-commerce platform provides an API endpoint to display revenue charts
for shop owners: GET /shops/{shopName}/revenue_data.json. The
API uses the shopName parameter to fetch revenue data but does not verify
if the authenticated user owns the specified shop.

Exploitation
An attacker, who is a legitimate user with their own shop, inspects the API re-
quest and replaces their shopName (e.g., my-shop) with another shop’s name
(e.g., competitor-shop). The API returns the competitor’s revenue data without
checking the user’s ownership.

Business Impact
Unauthorized access to sensitive financial data, potentially leading to compet-
itive advantage, blackmail, or data breaches.

8exPOSURe OF SeNSITIVe DATA

Exposure
of Sensitive Data
exposure of sensitive data is a critical pitfall in API se-
curity that can lead to significant risk. APIs often han-
dle sensitive information, such as user credentials,
payment data, and personal identifiers, making them
an attractive target for attackers.

For instance, an API might inadvertently return excessive data in its respons-
es or fail to properly sanitize input and output, exposing it to threats like data
breaches or unauthorized access. The consequences of such exposure are
severe, ranging from financial losses and legal penalties due to non-compli-
ance with regulations like GDPR or HIPAA, to long-term reputational damage
for organizations. Mitigating this risk requires implementing robust encryption
protocols, employing strict access controls, and conducting regular security
audits to identify and address gaps before they are exploited.

Business Impact
APIs that expose sensitive data—like credentials, payment details, or person-
al identifiers—can lead to financial loss, legal penalties, reputational damage,
and loss of customer trust. Such breaches enable identity theft, fraud, and
competitive exploitation, making strict access control, encryption, and data
filtering essential.

PRO TIPS

explicitly define what data your API
should return rather than exposing
entire objects.

Validate API responses against
a schema to ensure only necessary
properties are accessible.

Detect Sensitive Data in API re-
quests and responses to identify
data exposed where it shouldn’t be.

9POOR INVeNTORy AND VIS IB ILIT y

Poor Inventory and Visibility
Poor inventory and visibility of APIs pose a significant challenge to API securi-
ty, as organizations often rely on many APIs, some of which may be undocu-
mented, outdated, or improperly managed. Without a clear inventory, tracking
which APIs are active, identifying potential vulnerabilities, or monitoring unau-
thorized access becomes nearly impossible.

These blind spots in visibility can lead to data breaches, exploitation of ex-
posed endpoints, and compliance failures. Addressing this issue involves main-
taining an up-to-date inventory of all APIs, ensuring proper documentation,
and implementing monitoring tools to gain real-time insights into their usage.
We at Wallarm have hundreds of conversations with customers that, due to the
lack of proper security practices and modern tools, lack visibility into their API
structure and services. This proactive approach is critical for mitigating se-
curity risks and safeguarding sensitive data. Failing to maintain an accurate
inventory of API endpoints can create hidden vulnerabilities.

Example

Scenario
A healthcare company provides a cloud-based platform for managing patient
health records. Over the years, it has developed multiple APIs to support in-
tegrations with hospitals, insurance providers, and third-party health apps.
However, due to poor API lifecycle management, some APIs have been forgot-
ten or left undocumented. The company had an API for a now-defunct mobile
app that allowed patients to view their health records. This API (a zombie API)
was never decommissioned, even though the app was retired.

Exploitation
The zombie API uses outdated authentication methods (e.g., basic authentica-
tion instead of OAuth 2.0) and lacks modern security measures like rate limiting
or encryption for sensitive data.

Business Impact
Undocumented or outdated APIs (“zombie” APIs) increase the risk of breach-
es, compliance failures, and exploitation. Without full API visibility, organiza-
tions can’t monitor usage or secure endpoints, leading to regulatory fines, op-
erational disruption, and exposure of sensitive data.

PRO TIP

Create an inventory of all API infra-
structure, tracking who can access
each asset and its data.

Implement continuous API discovery
to identify changes, shadow APIs,
or rogue endpoints.

Thoroughly document APIs, in-
cluding authorization policies, error
reporting, and security measures.
Share these with relevant teams
to ensure consistent review and
testing.

Avoid using production data for
testing unless strictly necessary,
and implement safeguards to pre-
vent data leaks.

10INSUFFICIeNT R ATe LIMITING AND THROTTLING

Insufficient Rate Limiting
and Throttling
Insufficient rate limiting and throttling in APIs can expose systems to abuse,
leading to security and performance issues. Malicious actors can flood an API
with excessive requests without proper controls, resulting in Distributed Deni-
al-of-Service (DDoS) attacks or resource exhaustion.

The result is service disruption for legitimate users and data scraping, brute-
force attacks, and other exploits. Additionally, uncontrolled access can in-
crease operational costs due to overused resources. Addressing this issue
with robust rate limiting and throttling mechanisms ensures fair usage, main-
tains performance, and safeguards the API from potential misuse.

Example

Scenario
A company provides a telehealth platform that allows patients to book ap-
pointments, view medical records, and communicate with doctors. The plat-
form offers an API for third-party developers to build integrations with their
platform.The company’s API includes an endpoint /api/userinfo that al-
lows developers to retrieve user details (e.g., name, email, and phone number)
by providing a unique user ID. The endpoint is intended for internal use but
is not adequately secured. The API does not enforce rate limiting, meaning
an attacker can send unlimited requests without being blocked or flagged.

Exploitation
The attacker writes a script to iterate through user IDs (e.g., 1001 to 9999)
and sends requests to the /api/userinfo endpoint. For valid user IDs, the
API returns detailed user information, including names, email addresses, and
phone numbers. For invalid or inactive user IDs, the error messages reveal
additional information, such as whether the user account exists or is inactive.

Business Impact
The attacker compiles a database of thousands of user records, including
PII. The attacker uses the leaked data to launch targeted phishing campaigns
or sell the data to other malicious actors. The company is fined under data
protection laws like HIPAA or GDPR for failing to secure patient data.

PRO TIP

Set rate limits for every API or end-
point to restrict the number of re-
quests within a specified timeframe.

Apply request size limits to prevent
excessive data submissions, miti-
gating the risk of overloading your
system.

Deploy bot mitigation tools to block
illegitimate, automated traffic.

Apply Geo and Traffic Restrictions
to scrub undesirable traffic

11SeCURIT y MISCONFIGUR ATIONS

Security Misconfigurations
Security misconfiguration in API security is a critical pitfall that can expose sensitive
data and lead to devastating breaches. This issue often arises from poorly imple-
mented security settings, such as unused features left enabled, weak or default
credentials, mismanaged permissions, or unencrypted data in transit.

These oversights can give attackers easy entry points to exploit vulnerabili-
ties, compromise systems, and access confidential information. The coмnse-
quences include data leaks, financial loss, and reputational damage. effective
security practices, such as enforcing strong access controls, frequent config-
uration reviews, and proper encryption, are essential to mitigate these risks.

Example

Scenario
A company operates a popular e-commerce platform. To support its mobile
app and third-party integrations, the company provides an API that allows de-
velopers to access product catalogs, user profiles, and order details.

Exploitation
Misconfigured API endpoint includes an endpoint /api/orders that allows
users to retrieve their order history. However, the API is misconfigured to ac-
cept requests without proper authentication or authorization checks. The API
does not restrict access to specific user data. Instead, it allows any request
to retrieve order details for any user, as long as the order ID is provided.

A malicious actor discovers the misconfiguration by testing the API. They no-
tice that:
• The /api/orders endpoint does not require an API key or token.
• Providing a valid order ID (e.g., 12345) returns the full details of the order,

including: customer name; shipping address; email address; pone number;
payment method (e.g., “Visa ending in 1234”)

The attacker writes a script to brute-force order IDs (e.g., 10001, 10002, 10003)
and retrieves sensitive data for thousands of customers.

PRO TIP

Regularly review deployment and
configuration processes, ensuring
that all dependencies and environ-
ments adhere to secure practices.

Limit API interactions to secure, au-
thorized channels with appropriate
HTTP verbs.

Set proper Cross-Origin Resource
Sharing (CORS) policies for public
APIs.

12SeCURIT y MISCONFIGUR ATIONS

Business Impact
The attacker compiles a database of customer information, including: name;
addresses; contact details; partial payment information. The attacker sells the
data on the dark web, leading to identity theft and fraudulent activities target-
ing the company’s customers. News of the breach spreads, causing custom-
ers to lose trust in the company’s platform. The company faces penalties un-
der data protection laws like GDPR or CCPA for failing to secure customer data.

13SeRveR-SIDe ReqUeST FORGeRy (SSRF)

Server-side Request Forgery
(SSRF)
Server-Side Request Forgery (SSRF) is a critical vulnerability in API security that oc-
curs when an attacker manipulates a server to make unauthorized requests to inter-
nal or external resources. This often happens when APIs accept user input to fetch
data from a URL without proper validation or sanitization.

The pitfall lies in the server’s trust in its network, allowing attackers to exploit
SSRF to access sensitive internal systems, retrieve confidential data, or exe-
cute malicious commands. To mitigate this risk, developers should implement
strict input validation, enforce allowlists for permissible URLs, and restrict net-
work access for APIs to prevent unauthorized internal or external requests.

Example

Scenario
A company provides a cloud-based document management platform. It offers
an API that allows users to upload documents, retrieve metadata, and fetch
external resources (e.g., previewing a document from a URL). The API end-
point /api/fetch-url allows users to provide a URL, and the server fetches the
URL’s content to display a preview. For example:

The server fetches the URL’s content and returns it to the user. However, the
API does not validate or sanitize the user-provided URL, making it vulnerable
to SSRF.

PRO TIP

Restrict Access to Internal Resourc-
es and DMZs (Demilitarized Zones)
to prevent direct access from un-
trusted networks or systems.

Use Safe Libraries and Frameworks
that provide built-in protection
against SSRF vulnerabilities.

POST /api/fetch-url

{
 “url”: “https://example.com/document.pdf”
}

14SeRveR-SIDe ReqUeST FORGeRy (SSRF)

Exploitation
A malicious actor can use this endpoint /api/fetch-url and they can provide any
URL, including internal URLs within the company’s infrastructure. The attacker
can send the request

The server fetches the internal resource (e.g., an admin panel or internal API)
and returns the content to the attacker.

Business Impact
This will allow the attacker to:
• Access sensitive internal services.
• extract configuration files, such as /etc/passwd or cloud metadata end-

points (e.g., http://169.254.169.254/latest/meta-data/ in AWS
environments).

• enumerate internal network services and endpoints.

{
 “url”: “http://localhost:8080/admin”
}

15OveR-ReLIANCe ON PeRIMeTeR-BASeD SeCURIT y

Over-Reliance on Perimeter-
Based Security
Traditional defenses rely heavily on securing the network perimeter using firewalls,
intrusion detection systems (IDS), and intrusion prevention systems (IPS). Howev-
er, APIs often operate beyond the traditional perimeter, especially in cloud environ-
ments, making them vulnerable to attacks that bypass these defenses.

Traditional tools are not designed to provide deep visibility into API traffic. They
may fail to detect malicious API calls, parameter tampering, or unauthorized
access attempts, as they lack the context to understand API-specific be-
haviors. Traditional defenses often rely on signature-based detection, which
is reactive and ineffective against zero-day API vulnerabilities or sophisticated
attacks that exploit business logic.

Scenario

Example
A company provides a payment processing platform for e-commerce busi-
nesses. Their architecture includes a public-facing API for merchants to pro-
cess transactions and an internal API for managing sensitive operations like
user authentication, account management, and payment reconciliation. The
company relies heavily on a perimeter-based security model, using a firewall
and API gateway to protect its APIs.The internal API is assumed to be secure
because it is only accessible from within the company’s network. As a result,
the internal API lacks robust authentication and authorization mechanisms.

Exploitation
Let’s assume an attacker gains access to a trusted system within the compa-
ny’s network, such as a developer’s laptop or a misconfigured server, through
phishing or exploiting a vulnerability.Once inside the network, the attacker can
bypass the perimeter defenses (firewall and API gateway) and directly access
the internal API.

PRO TIP

Adopt a layered security approach
by combining perimeter security
with other measures like advanced
API security, network segmentation,
and application-level security.

Adopt zero Trust and Strong Au-
thentication: Treat all API requests
as untrusted, enforce strict identity
verification, and use OAuth 2.0,
MFA, and least privilege access.

Monitor, Test, and educate: Regular-
ly log and monitor API activity, con-
duct vulnerability assessments, and
train teams on secure API practices.

16OveR-ReLIANCe ON PeRIMeTeR-BASeD SeCURIT y

The attacker discovers that the internal API lacks proper authentication and
authorization checks. For example:
• The endpoint /api/internal/refund allows refunds to be processed

by simply providing a transaction ID and amount.
• The endpoint /api/internal/update-account allows account de-

tails to be modified without verifying the user’s identity.

Business Impact
The attacker sends requests to these endpoints to Issue fraudulent refunds
to their own accounts, modify account details to redirect payments to their
bank accounts, and extract sensitive customer data, such as payment card
details and personal information.

17BROKeN OBjeCT PROPeRT y LeVeL AUTHORIz ATION

Broken Object Property Level
Authorization
Broken Object Property Level Authorization (BOPLA) occurs when an API fails to en-
force proper authorization checks at the property level of an object. This means
that while a user may have permission to access or modify an object (e.g., their user
profile), they can also manipulate sensitive or restricted properties within that object
(e.g., setting themselves as an admin) without proper validation.

BOPLA is important because it can lead to privilege escalation, unauthorized
access to sensitive data, or manipulation of critical system settings. ensuring
property-level authorization is crucial to prevent exploitation and maintain the
security and integrity of APIs.

Example

Scenario
A company operates a social media platform where users can create profiles,
post updates, and manage account settings. It provides an API for its mobile
app and third-party integrations. This API design is with Insufficient Proper-
ty-Level Authorization.

The API includes an endpoint for updating user profiles:

The API accepts a JSON payload with various properties, such as:

PUT /api/user/{userId}/profile

PRO TIP

Implement Fine-Grained Authoriza-
tion: ensure access control checks
are applied at the object property
level, not just at the endpoint level.

Use Role-Based Access Control
(RBAC) or Attribute-Based Access
Control (ABAC): Define clear roles and
permissions for accessing specific
properties.

Conduct Security Testing: Regularly
test APIs for authorization flaws using
tools like penetration testing and
automated scanners.

Follow the Principle of Least Privilege:
Limit access to only the data and
functionality necessary for a us-
er’s role.

Audit and Monitor API Activity: Log
and monitor API requests to detect
and respond to unauthorized access
attempts.

{
 “username”: “new_username”,
 “email”: “new_email@example.com”,
 “isAdmin”: true
}

18BROKeN OBjeCT PROPeRT y LeVeL AUTHORIz ATION

While the API enforces user-level authorization (e.g., ensuring that users can
only update their profiles), it does not enforce property-level authorization.
This means:

Any authenticated user can modify all properties in their profile, including sen-
sitive or restricted fields like isAdmin.

Exploitation
An attacker finds that isAdmin property is included in the jSON payload and
is not restricted to authorized users. They can exploit this to escalate their priv-
ileges. The attacker sends a request to the API to update a profile:

With the following payload:

The API processes the request and updates the profile, granting the attack-
er admin privileges because it does not validate whether they are authorized
to modify the isAdmin property.

Business Impact
The attacker gains access to sensitive admin-only features, such as:
• Viewing all user data, including private messages and email addresses.
• Deleting or modifying other users’ accounts.
• Accessing analytics and financial data for the platform.

PUT /api/user/12345/profile

{
 “username”: “Test”,
 “email”: “test@example.com”,
 “isAdmin”: true
}

19UNReSTRICTeD ReSOURCe CONSUMPTION

Unrestricted Resource
Consumption
Unrestricted resource consumption in APIs happens when an API allows users
to consume excessive server resources, such as CPU, memory, or bandwidth, with-
out proper limits. This can lead to performance issues, server crashes, or even de-
nial-of-service (DoS) attacks, disrupting services for legitimate users.

Addressing this is important because it ensures fair usage, protects system
stability, and prevents malicious actors from exploiting the API to overload in-
frastructure. Implementing rate limits, quotas, and resource caps is essential
to safeguard APIs and maintain a reliable user experience.

Example

Scenario
A company operates a popular video streaming platform. It provides an API
for its mobile app and third-party integrations, allowing users to search for
videos, stream content, and manage their accounts. Their API is designed with
no resource limits.

API includes an endpoint for searching videos:

The endpoint accepts query parameters like keyword, page, and limit:

However, the API does not enforce any restrictions on the limit parameter, al-
lowing users to request an unlimited number of results in a single query.

PRO TIP

Rate Limiting: Set limits on the
number of requests a user or client
can make within a specific time
frame.

Throttling: Slow down the re-
sponse rate for users exceeding
their allowed limits.

Authentication and Authoriza-
tion: Only authenticated and autho-
rized users can access the API.

Resource Quotas: Define quotas
for resource usage, such as data
transfer or compute time.

Monitoring and Alerts: Contin-
uously monitor API usage and set
up alerts for unusual activity.

Caching: Use caching mechanisms
to reduce the load on backend sys-
tems for frequently requested data.

GET /api/videos/search

GET /api/videos/
search?keyword=action&page=1&limit=10

20UNReSTRICTeD ReSOURCe CONSUMPTION

Exploitation
A malicious actor discovers the flaw in the API that by setting a very high value
for the limit parameter, they can force the server to process and return a mas-
sive amount of data in a single request:

The attacker writes a script to repeatedly send requests to the
/api/videos/search endpoint with an extremely high limit value. each re-
quest consumes significant server resources (e.g., CPU, memory, and band-
width) as the server processes the query, retrieves the data, and formats the
response.

Business Impact
The excessive resource consumption caused by the attacker’s requests over-
whelms the server, leading to a Denial of Service event for the service, result-
ing in:
• slower response times for legitimate users;
• the server crashes, making the API and platform unavailable to all users.

GET /api/videos/
search?keyword=action&page=1&limit=1000000

21UNReSTRICTeD ACCeSS TO SeNSITIVe BUSINeSS FLOWS

Unrestricted Access
to Sensitive Business Flows
Unrestricted Access to Sensitive Business Flows in APIs occurs when APIs fail to en-
force proper authorization for critical operations, such as processing refunds, mod-
ifying user roles, or accessing financial data. This allows unauthorized users to ex-
ploit these flows, leading to fraud, data breaches, or system abuse.

Securing sensitive business flows is crucial to prevent exploitation, protect fi-
nancial and operational integrity, and maintain user trust. Proper authorization
checks, role-based access control, and activity monitoring are essential to en-
sure only authorized users can perform these critical actions.

Example

Scenario
A company operates a financial platform that allows users to send and receive
payments, manage accounts, and process refunds. It provides an API for its
mobile app and third-party integrations.

The API includes an endpoint for processing refunds with unrestricted access:

The endpoint accepts a JSON payload with the following parameters:

However, the API does not enforce proper authorization checks to ensure only
authorized users (e.g., merchants or admins) can initiate refunds. Any authen-
ticated user can call the endpoint and process refunds for any transaction.

PRO TIP

Rate Limiting: Set limits on the num-
ber of requests a user or client can
make within a specific time frame.

Throttling: Slow down the response
rate for users exceeding their al-
lowed limits.

Authentication and Authorization:
Only authenticated and authorized
users can access the API.

Resource quotas: Define quotas for
resource usage, such as data trans-
fer or compute time.

Monitoring and Alerts: Continuously
monitor API usage and set up alerts
for unusual activity.

Caching: Use caching mechanisms
to reduce the load on backend sys-
tems for frequently requested data.

POST /api/refunds

{
 “transactionId”: “123456”,
 “refundAmount”: 100.00
}

22UNReSTRICTeD ACCeSS TO SeNSITIVe BUSINeSS FLOWS

Exploitation
An attacker discovers this vulnerability that the API /api/refunds endpoint
does not verify whether they own the transaction attempting to refund.

They can refund transactions belonging to other users or merchants by simply
providing a valid transactionId.

The attacker writes a script to automate refund requests. She uses a brute-
force approach to guess valid transactionId values (e.g., sequential IDs
like 123456, 123457, 123458).

For each valid transaction ID, they send a refund request:

The API processes the requests and issues refunds to the attacker’s account,
even though they are not authorized to initiate refunds for those transactions.

Business Impact
The company can suffer significant financial losses as fraudulent refunds are
processed and funds are transferred to unauthorized accounts. Merchants
using the platform experience financial discrepancies and disruptions in their
operations and could result in potential damages or loss of revenue.

{
 “transactionId”: “123456”,
 “refundAmount”: 100.00
}

23CONCLUSION

Conclusion
APIs are the backbone of our digital ecosystem, enabling critical data exchanges
and unlocking business innovation. But with every opportunity comes risk. Unau-
thorized access, data breaches, and compliance failures are just a few of the threats
lurking when API security is overlooked.

enterprise architects and CISOs are on the frontlines of protecting sensitive
data. Have you recently evaluated your API security posture? Are you con-
fident your current measures align with industry best practices? If not, now
is the time to act.

Neglecting API security puts your organization at risk of costly breaches, rep-
utational damage, and regulatory penalties. On the other hand, implementing
strong API security measures mitigates these risks, fosters customer trust, and
strengthens your overall cyber resilience.

Here’s your next step
Don’t leave your APIs vulnerable! Schedule a consultation with our experts
to assess your current posture. your data integrity and compliance depend
on focused, proactive action. Act today, and secure your APIs before it’s too
late.

Schedule a consultation

https://www.wallarm.com/request-demo

SAN FR ANCISCO, CA 94107188 KING ST. UNIT 508+1 (415) 940-7077

Book a Demo

tel:+14159407077
https://www.wallarm.com/request-demo

	Executive Summary
	Common Pitfalls in API Security
	Lack of Proper Authentication and Authorization
	Exposure of Sensitive Data
	Poor Inventory and Visibility
	Insufficient Rate Limiting and Throttling
	Security Misconfigurations
	Server-side Request Forgery (SSRF)
	Over-Reliance on Perimeter-Based Security
	Broken Object Property Level Authorization
	Unrestricted Resource Consumption
	Unrestricted Access to Sensitive Business Flows
	Conclusion

